Elastoplastic Modeling von Jean Salencon

Elastoplastic Modeling
eBook
ISBN/EAN: 9781119751366
Sprache: Englisch
Umfang: 272 S., 12.75 MB
E-Book
Format: PDF
DRM: Adobe DRM
€ 139,99
(inklusive MwSt.)
Download
E-Book kaufen
Auf Wunschliste
Elastoplastic behavior has long been part of the constitutive models incorporated in most computer codes, used in the design of civil and mechanical engineering structures. Elastoplastic Modeling offers a compact presentation of the fundamentals of classical elastoplastic modeling, the basis for many engineering applications currently implemented. This book provides a general background to enhance understanding of the modeling assumptions that govern the rationales of these applications. With this understanding comes the ability to assess their validation range and propose possible improvements. An instructive approach replaces excessive mathematical developments with a semi-phenomenological method, where mathematical modeling is driven by and derived from experimental observations. A logical track is followed, starting from material behavior modeling and leading to the analysis of the anelastic response of systems, subjected to quasi-static loading processes.
Jean Salencon is a Member of the French Academy of Sciences, the French Academy of Technologies, and Academia Europaea. He is also an Honorary/Foreign Member of the Academies of Hungary, Milan and Lisbon. He is also Senior Fellow of the Hong Kong Institute for Advanced Study (HKIAS). His research interests include continuum mechanics, structural analysis and soil mechanics.
Preface xiNotations xiiiIntroduction xxvChapter 1. Elastic Domains: Yield Conditions11.1. Introductory remarks 11.2. An overview of the model 41.2.1. The infinitesimal transformation framework 41.2.2. Time variable 41.3. One-dimensional approach 51.3.1. Uniaxial tension test 51.3.2. Uniaxial tension-compression test 81.3.3. The Bauschinger effect 91.3.4. Other one-dimensional experiments 101.4. Multidimensional approach 111.4.1. A multidimensional experiment 111.4.2. Initial elastic domain 121.4.3. Work-hardening 131.4.4. Perfectly plastic material 141.4.5. Buis experimental results 141.5. Yield conditions 161.5.1. Initial yield condition and yield function 161.5.2. Loading function and work-hardening 181.5.3. Simple work-hardening models 191.6. Yield criteria and loading functions 221.6.1. Convexity 221.6.2. Isotropy 231.6.3. The Tresca yield criterion 241.6.4. The von Mises yield criterion 271.6.5. Other yield criteria for metals 301.6.6. Yield criteria for anisotropic materials 311.6.7. Yield criteria for granular materials 351.7. Final comments 41Chapter 2. The Plastic Flow Rule432.1. One-dimensional approach 432.1.1. Work-hardening material 432.1.2. Perfectly plastic material 452.2. Multidimensional approach for a work-hardening material 462.2.1. Loading and unloading processes 462.2.2. General properties of the plastic flow rule 492.2.3. Plastic potential: associated plasticity 512.2.4. Principle of maximum plastic work 542.2.5. Validation of the principle of maximum plastic work 552.2.6. Piecewise continuously differentiable loading functions 572.3. Multidimensional approach for a perfectly plastic material 592.3.1. Loading and unloading processes 592.3.2. Application of the principle of maximum plastic work 612.3.3. Druckers postulate 622.4. Plastic dissipation 642.4.1. Plastic dissipation per unit volume 642.4.2. Plastic dissipation and support function of the elastic domain 642.4.3. Plastic velocity jumps in the case of perfectly plastic materials 652.5. Generalized standard materials 662.6. Mises, Trescas and Coulombs perfectly plastic standard materials 692.6.1. Mises perfectly plastic standard material 692.6.2. Trescas perfectly plastic standard material 712.6.3. Coulombs perfectly plastic standard material 722.6.4. About edge and vertex regimes 74Chapter 3. Elastoplastic Modeling in Generalized Variables773.1. About generalized variables 773.2. Elastic domains 783.2.1. Initial elastic domain 783.2.2. Work-hardening and perfect plasticity 793.3. The anelastic flow rule 803.3.1. Anelasticity or plasticity? 803.3.2. Principle of maximum work 813.3.3. The work-hardening anelastic flow rule 823.3.4. The perfectly plastic anelastic flow rule 833.3.5. Anelastic dissipation 843.4. Generalized continua 843.4.1. Curvilinear generalized continuum 843.4.2. Planar generalized continuum 90Chapter 4. Quasi-static Elastoplastic Processes1014.1. Quasi-static loading processes 1014.1.1. Mechanical evolution within the SPH framework 1014.1.2. Quasi-static loading process within the SPH framework 1044.1.3. Statically admissible and kinematically admissible fields 1044.1.4. Parametric problems 1054.2. Quasi-static elastoplastic loading processes 1084.2.1. Problematics 1084.2.2. Existence and uniqueness theorems 1114.2.3. Uniqueness theorems for stress rates and strain rates 1154.3. Response of a system made from an elastic and standard perfectly plastic material 1164.3.1. Initial elastic domain of the system 1164.3.2. Existence of the solution to the elastoplastic evolution problem 1184.3.3. Solution to the elastoplastic evolution problem 1194.3.4. Limit loads for the system 1204.3.5. Linear elastic response of the system 1214.3.6. Anelastic response of the system 1224.3.7. Taking geometry changes into account 1364.4. Response of a system made from a standard work-hardening elastoplastic material 1394.4.1. Initial elastic domain of the system 1394.4.2. Residual stress rates, residual strain rates 1404.4.3. Maximum work theorem 1404.4.4. Summing up... 141Chapter 5. Quasi-static Elastoplastic Processes: Minimum Principles1435.1. Elastic and standard perfectly plastic constituent material 1435.1.1. Minimum principle for the stress rate field 1435.1.2. Minimum principle for the velocity field 1465.1.3. Other expressions of the minimum principles 1525.2. Elastic and standard positive work-hardening constituent material 1535.2.1. Revisiting the constitutive equation 1535.2.2. Minimum principle for the stress rate field 1555.2.3. Minimum principle for the velocity field 1565.2.4. Other expressions of the minimum principles 1585.2.5. Historical comments 1585.3. Minimum principles for the stress and strain fields 1595.3.1. Colonnettis theorem 1595.3.2. Other expressions of Colonnettis minimum principles 160Chapter 6. Limit Loads: Limit Analysis1616.1. Limit loads and yield design (1) 1616.2. Static approach, first plastic collapse theorem 1636.2.1. Safe loads, interior approach 1636.2.2. Lower bound theorem 1646.3. Kinematic approach, second plastic collapse theorem 1656.3.1. Plastically admissible velocity fields 1656.3.2. Kinematic necessary condition to be satisfied by safe loads 1676.3.3. Exterior approach, upper bound theorem 1696.4. Combining static and kinematic approaches 1706.4.1. Determination of a limit load 1706.4.2. Association theorem 1726.4.3. Duality 1736.5. Limit analysis and the rigid, perfectly plastic material concept 1736.5.1. Rigid and standard perfectly plastic model 1736.5.2. The connection with limit loads 1746.6. Limit loads and yield design (2) 1766.6.1. Fundamentals of the yield design theory 1766.6.2. Resistance of the constituent material 1776.6.3. Potentially safe loads, interior approach and lower bound theorem 1786.6.4. Maximum resisting rate of work, exterior approach and upper bound theorem 1786.6.5. Matching limit load and yield design theories 1816.7. Two-dimensional limit analysis 1826.7.1. Plane strain limit analysis problems 1826.7.2. Partial static solutions to plane strain limit analysis problems 1836.7.3. Complete static solutions to plane strain limit analysis problems 1836.7.4. Complete kinematic solutions to plane strain limit analysis problems 1846.7.5. Incomplete solutions to plane strain limit analysis problems 1886.7.6. Complete solutions to plane strain limit analysis problems 1896.7.7. Comments 1926.7.8. Plane stress limit analysis 1946.7.9. Axially symmetric problems 1966.8. Implementation 2006.8.1. Analytical solutions 2006.8.2. Analytical/numerical solutions 2026.8.3. Numerical solutions 2036.8.4. The example of a tantalizing problem 2046.8.5. Final comments 208References 211Index 231

„E-Book“ steht für digitales Buch. Um diese Art von Büchern lesen zu können wird entweder eine spezielle Software für Computer, Tablets und Smartphones oder ein E-Book Reader benötigt. Da viele verschiedene Formate (Dateien) für E-Books existieren, gilt es dabei, einiges zu beachten.

Von uns werden digitale Bücher in drei Formaten ausgeliefert. Die Formate sind EPUB mit DRM (Digital Rights Management), EPUB ohne DRM und PDF. Bei den Formaten PDF und EPUB ohne DRM müssen Sie lediglich prüfen, ob Ihr E-Book Reader kompatibel ist. Wenn ein Format mit DRM genutzt wird, besteht zusätzlich die Notwendigkeit, dass Sie einen kostenlosen Adobe® Digital Editions Account besitzen. Wenn Sie ein E-Book, das Adobe® Digital Editions benötigt herunterladen, erhalten Sie eine ASCM-Datei, die zu Digital Editions hinzugefügt und mit Ihrem Account verknüpft werden muss. Einige E-Book Reader (zum Beispiel PocketBook Touch) unterstützen auch das direkte Eingeben der Login-Daten des Adobe Accounts – somit können diese ASCM-Dateien direkt auf das betreffende Gerät kopiert werden.

Da E-Books nur für eine begrenzte Zeit – in der Regel 6 Monate – herunterladbar sind, sollten Sie stets eine Sicherheitskopie auf einem Dauerspeicher (Festplatte, USB-Stick oder CD) vorsehen. Auch ist die Menge der Downloads auf maximal 5 begrenzt.

Funktionsweise E-Books.