Principles and Applications of Lithium Secondary Batteries von Jung-Ki Park

Principles and Applications of Lithium Secondary Batteries
eBook
ISBN/EAN: 9783527650422
Sprache: Englisch
Umfang: 380 S., 10.47 MB
E-Book
Format: EPUB
DRM: Adobe DRM
€ 133,99
(inklusive MwSt.)
Download
E-Book Download
Auf Wunschliste
Lithium secondary batteries have been key to mobile electronics since 1990. Large-format batteries typically for electric vehicles and energy<br> storage systems are attracting much attention due to current energy and environmental issues. Lithium batteries are expected to play a central<br> role in boosting green technologies. Therefore, a large number of scientists and engineers are carrying out research and development on<br> lithium secondary batteries.<br><br> The book is written in a straightforward fashion suitable for undergraduate and graduate students, as well as scientists, and engineers<br> starting out in the field. The chapters in this book have been thoroughly edited by a collective of experts to achieve a cohesive book with a consistent style, level, and philosophy. They cover a wide range of topics, including principles and technologies of key materials such as the<br> cathode, anode, electrolyte, and separator. Battery technologies such as design, manufacturing processes, and evaluation methods as well as applications are addressed. In addition, analytical methods for determining electrochemical and other properties of batteries are also included.<br><br> Hence, this book is a must-have for everyone interested in obtaining all the basic information on lithium secondary batteries.<br>
Jung-Ki Park is a Professor in the Department of Chemical and Biomolecular Engineering at KAIST in South Korea. He has 20 years lithium battery research experience in which area he has published over 100 papers and delivered more than 50 international invited talks. He was Director of the Advanced Secondary Batteries Education Centre supported by the Korean government (Ministry of Commerce, Industry, and Energy) from 2003 to 2009. Prof. Park is President of the Korean Electrochemical Society, a founder of the International Conference on Polymer Batteries and Fuel Cells and chairman of IMLB 2012 (International Conference on Lithium Batteries).
List of Contributors xiPreface xiii1 Introduction 11.1 History of Batteries 11.2 Development of Cell Technology 31.3 Overview of Lithium Secondary Batteries 31.4 Future of Lithium Secondary Batteries 7References 72 The Basic of Battery Chemistry 92.1 Components of Batteries 92.1.1 Electrochemical Cells and Batteries 92.1.2 Battery Components and Electrodes 92.1.3 Full Cells and Half Cells 112.1.4 Electrochemical Reaction and Electric Potential 112.2 Voltage and Current of Batteries 122.2.1 Voltage 122.2.2 Current 142.2.3 Polarization 142.3 Battery Characteristics 152.3.1 Capacity 152.3.2 Energy Density 162.3.3 Power 162.3.4 Cycle Life 172.3.5 Discharge Curves 173 Materials for Lithium Secondary Batteries 213.1 Cathode Materials 213.1.1 Development History of Cathode Materials 213.1.2 Overview of Cathode Materials 233.1.2.1 Redox Reaction of Cathode Materials 233.1.2.2 Discharge Potential Curves 243.1.2.3 Demand Characteristics of Cathode Materials 263.1.2.4 Major Cathode Materials 273.1.3 Structure and Electrochemical Properties of Cathode Materials 273.1.3.1 Layered Structure Compounds 273.1.3.2 Spinel Composites 463.1.3.3 Olivine Composites 523.1.3.4 Vanadium Composites 573.1.4 Performance Improvement by Surface Modification 583.1.4.1 Layered Structure Compounds 603.1.4.2 Spinel Compound 613.1.4.3 Olivine Compounds 643.1.5 Thermal Stability of Cathode Materials 653.1.5.1 Basics of Battery Safety 653.1.5.2 Battery Safety and Cathode Materials 683.1.5.3 Thermal Stability of Cathodes 693.1.6 Prediction of Cathode Physical Properties and Cathode Design 753.1.6.1 Understanding of First-Principles Calculation 773.1.6.2 Prediction and Investigation of Electrode Physical Properties Using First-Principles Calculation 79References 843.2 Anode Materials 893.2.1 Development History of Anode Materials 893.2.2 Overview of Anode Materials 903.2.3 Types and Electrochemical Characteristics of Anode Materials 913.2.3.1 Lithium Metal 913.2.3.2 Carbon Materials 923.2.3.3 Noncarbon Materials 1183.2.4 Conclusions 137References 1373.3 Electrolytes 1413.3.1 Liquid Electrolytes 1423.3.1.1 Requirements of Liquid Electrolytes 1423.3.1.2 Components of Liquid Electrolytes 1433.3.1.3 Characteristics of Liquid Electrolytes 1473.3.1.4 Ionic Liquids 1493.3.1.5 Electrolyte Additives 1533.3.1.6 Enhancement of Thermal Stability for Electrolytes 1573.3.1.7 Development Trends of Liquid Electrolytes 1613.3.2 Polymer Electrolytes 1623.3.2.1 Types of Polymer Electrolytes 1623.3.2.2 Preparation of Polymer Electrolytes 1693.3.2.3 Characteristics of Polymer Electrolytes 1713.3.2.4 Development Trends of Polymer Electrolytes 1733.3.3 Separators 1733.3.3.1 Separator Functions 1733.3.3.2 Basic Characteristics of Separators 1743.3.3.3 Effects of Separators on Battery Assembly 1763.3.3.4 Oxidative Stability of Separators 1763.3.3.5 Thermal Stability of Separators 1783.3.3.6 Development of Separator Materials 1793.3.3.7 Separator Manufacturing Process 1803.3.3.8 Prospects for Separators 1813.3.4 Binders, Conducting Agents, and Current Collectors 1813.3.4.1 Binders 1813.3.4.2 Conducting Agents 1893.3.4.3 Current Collectors 191References 1923.4 Interfacial Reactions and Characteristics 1953.4.1 Electrochemical Decomposition of Nonaqueous Electrolytes 1953.4.2 SEI Formation at the Electrode Surface 2003.4.3 AnodeElectrolyte Interfacial Reactions 2033.4.3.1 Lithium MetalElectrolyte Interfacial Reactions 2043.4.3.2 Interfacial Reactions at Graphite (Carbon) 2093.4.3.3 SEI Layer Thickness 2113.4.3.4 Effect of Additives 2123.4.3.5 Interfacial Reactions between a Noncarbonaceous Anode and Electrolytes 2143.4.4 CathodeElectrolyte Interfacial Reactions 2163.4.4.1 Native Surface Layers of Oxide Cathode Materials 2173.4.4.2 SEI Layers of Oxide Cathodes 2183.4.4.3 Interfacial Reactions at Oxide Cathodes 2183.4.4.4 Interfacial Reactions of Phosphate Cathode Materials 2233.4.5 Current CollectorElectrolyte Interfacial Reactions 2253.4.5.1 Native Layer of Aluminum 2253.4.5.2 Corrosion of Aluminum 2263.4.5.3 Formation of Passive Layers on Aluminum Surface 228References 2294 Electrochemical and Material Property Analysis 2314.1 Electrochemical Analysis 2314.1.1 Open-Circuit Voltage 2314.1.2 Linear Sweep Voltammetry 2324.1.3 Cyclic Voltammetry 2324.1.4 Constant Current (Galvanostatic) Method 2344.1.4.1 Cutoff Voltage Control 2344.1.4.2 Constant Capacity Cutoff Control 2364.1.5 Constant Voltage (Potentiostatic) Method 2364.1.5.1 Constant Voltage Charging 2364.1.5.2 Potential Stepping Test 2364.1.6 GITT and PITT 2384.1.6.1 Gitt 2384.1.6.2 Pitt 2394.1.7 AC Impedance Analysis 2394.1.7.1 Principle 2394.1.7.2 Equivalent Circuit Model 2414.1.7.3 Applications in Electrode Characteristic Analysis 2474.1.7.4 Applications in Al/LiCoO2 /Electrolyte/Carbon/Cu Battery Analysis 2494.1.7.5 Applications in Al/LiCoO2 /Electrolyte/MCMB/Cu Cell Analysis 2534.1.7.6 Relative Permittivity 2544.1.7.7 Ionic Conductivity 2564.1.7.8 Diffusion Coefficient 2574.1.8 EQCM Analysis 257References 2604.2 Material Property Analysis 2634.2.1 X-ray Diffraction Analysis 2634.2.1.1 Principle of X-ray Diffraction Analysis 2634.2.1.2 Rietveld Refinement 2654.2.1.3 In Situ XRD 2674.2.2 FTIR and Raman Spectroscopy 2694.2.2.1 FTIR Spectroscopy 2704.2.2.2 Raman Spectroscopy 2754.2.3 Solid-State Nuclear Magnetic Resonance Spectroscopy 2804.2.4 X-ray Photoelectron Spectroscopy (XPS) 2824.2.5 X-ray Absorption Spectroscopy (XAS) 2854.2.5.1 X-ray Absorption Near-Edge Structure (XANES) 2874.2.5.2 Extended X-ray Absorption Fine Structure (EXAFS) 2884.2.6 Transmission Electron Microscopy (TEM) 2924.2.7 Scanning Electron Microscopy (SEM) 2964.2.8 Atomic Force Microscopy (AFM) 3004.2.9 Thermal Analysis 3014.2.10 Gas Chromatography-Mass spectrometry (GCMS) 3064.2.11 Inductively Coupled Plasma Mass Spectroscopy (ICP-MS) 3114.2.12 BrunauerEmmettTeller (BET) Surface Analysis 311References 3155 Battery Design and Manufacturing 3195.1 Battery Design 3195.1.1 Battery Capacity 3205.1.2 Electrode Potential and Battery Voltage Design 3215.1.3 Design of Cathode/Anode Capacity Ratio 3235.1.4 Practical Aspects of Battery Design 3255.2 Battery Manufacturing Process 3275.2.1 Electrode Manufacturing Process 3285.2.1.1 Preparation of Electrode Slurry 3285.2.1.2 Electrode Coating 3295.2.1.3 Roll Pressing Process 3305.2.1.4 Slitting Process 3305.2.1.5 Vacuum Drying Process 3315.2.2 Assembly Process 3315.2.2.1 Winding Process 3315.2.2.2 Jelly Roll Insertion/Cathode Tab Welding/Beading Process 3325.2.2.3 Electrolyte Injection Process 3345.2.2.4 Cathode Tab Welding/Crimping/X-Ray Inspection/Washing Process 3345.2.3 Formation Process 3345.2.3.1 Purpose of the Formation Process 3345.2.3.2 Procedures and Functions 334References 3356 Battery Performance Evaluation 3376.1 Charge and Discharge Curves of Cells 3376.1.1 Significance of Charge and Discharge Curves 3376.1.2 Adjustment of Charge/Discharge Curves 3396.1.3 Overcharging and Charge/Discharge Curves 3406.2 Cycle Life of Batteries 3426.2.1 Significance of Cycle Life 3426.2.2 Factors Affecting Battery Cycle Life 3426.3 Battery Capacity 3446.3.1 Introduction 3446.3.2 Battery Capacity 3456.3.3 Measurement of Battery Capacity 3466.4 Discharge Characteristics by Discharge Rate 3476.5 Temperature Characteristics 3496.5.1 Low-Temperature Characteristics 3496.5.2 High-Temperature Characteristics 3506.6 Energy and Power Density (Gravimetric/Volumetric) 3516.6.1 Energy Density 3516.6.2 Power Density 3516.7 Applications 3516.7.1 Mobile Device Applications 3526.7.2 Transportation 3526.7.3 Others 353Index 355

„E-Book“ steht für digitales Buch. Um diese Art von Büchern lesen zu können wird entweder eine spezielle Software für Computer, Tablets und Smartphones oder ein E-Book Reader benötigt. Da viele verschiedene Formate (Dateien) für E-Books existieren, gilt es dabei, einiges zu beachten.

Von uns werden digitale Bücher in drei Formaten ausgeliefert. Die Formate sind EPUB mit DRM (Digital Rights Management), EPUB ohne DRM und PDF. Bei den Formaten PDF und EPUB ohne DRM müssen Sie lediglich prüfen, ob Ihr E-Book Reader kompatibel ist. Wenn ein Format mit DRM genutzt wird, besteht zusätzlich die Notwendigkeit, dass Sie einen kostenlosen Adobe® Digital Editions Account besitzen. Wenn Sie ein E-Book, das Adobe® Digital Editions benötigt herunterladen, erhalten Sie eine ASCM-Datei, die zu Digital Editions hinzugefügt und mit Ihrem Account verknüpft werden muss. Einige E-Book Reader (zum Beispiel PocketBook Touch) unterstützen auch das direkte Eingeben der Login-Daten des Adobe Accounts – somit können diese ASCM-Dateien direkt auf das betreffende Gerät kopiert werden.

Da E-Books nur für eine begrenzte Zeit – in der Regel 6 Monate – herunterladbar sind, sollten Sie stets eine Sicherheitskopie auf einem Dauerspeicher (Festplatte, USB-Stick oder CD) vorsehen. Auch ist die Menge der Downloads auf maximal 5 begrenzt.

Funktionsweise E-Books.