DNA Interactions with Polymers and Surfactants von Rita/Lindman Dias

DNA Interactions with Polymers and Surfactants
eBook
ISBN/EAN: 9780470286357
Sprache: Englisch
Umfang: 432 S., 14.33 MB
E-Book
Format: PDF
DRM: Adobe DRM
€ 188,99
(inklusive MwSt.)
Download
E-Book Download
Auf Wunschliste
<b>A broad overview of the interaction of DNA with surfactants and polymers</b><p>Due to the potential benefits of biotechnology, interest in the interaction between DNA and surfactants and polymers has become increasingly significant. Now,<i>DNA Interactions with Polymers and Surfactants</i> provides an extensive, up-to-date overview of the subject, giving readers a basis for understanding the factors leading to complexation between DNA and different cosolutes, including metal ions, polyelectrolytes, spermine, spermidine, surfactants and lipids, and proteins.</p><p>Topical coverage includes:</p><ul><li><p>Polyelectrolytes, physico-chemical aspects and biological significance</p></li><li><p>Solution behavior of nucleic acids</p></li><li><p>Single DNA molecules: compaction and decompaction</p></li><li><p>Interaction of DNA with surfactants and cationic polymers</p></li><li><p>Interactions of histones with DNA</p></li><li><p>DNA-DNA interactions</p></li><li><p>The hydration of DNA-amphiphile complexes</p></li><li><p>DNA-surfactant/lipid complexes at liquid interfaces</p></li><li><p>DNA and DNA-surfactant complexes at solid surfaces</p></li><li><p>The role of correlation forces for DNA-cosolute interactions</p></li><li><p>Simulations of polyions</p></li><li><p>Cross-linked DNA gels and gel particles</p></li><li><p>DNA as an amphiphilic polymer</p></li><li><p>Lipid-DNA interactions</p></li></ul><p>Covering both theoretical and practical aspects of the subject,<i>DNA Interactions with Polymers and Surfactants</i> is an ideal resource for chemists and biochemists working in gene and DNA delivery research in industry and academia, as well as for cell biologists, chemical engineers, molecular biologists, and development biologists in the pharmaceutical industry.</p>
Rita S. Dias, PhD, is a postdoctoral scientist in the Department of Physical Chemistry at Lund University, Sweden. Her current research involves the control of DNA condensation using surfactant mixtures and Monte Carlo simulations on the compaction of DNA and interaction of macromolecules with coarse-grained lipid membranes.Björn Lindman, PhD, has served as Full Professor at Lund University for the past three decades. Dr. Lindman's contributions have included the determination of the structure of microemulsions, the development of novel delivery systems for pharmaceuticals, and new systems for eliminating adhesions in surgery. He was the first to establish phase diagrams for mixed polymer-surfactant solutions as well as the bicontinuity of microemulsions. Dr. Lindman is the author of hundreds of scientific publications and has coauthored or edited several books, includingSurfactants and Polymers in Aqueous Solution, Second Edition (Wiley).
Preface.Contributors.1 Polyelectrolytes. Physicochemical Aspects and Biological Significance (Magnus Ullner).1.1 Introduction.1.2 Polyelectrolytes and Biological Function.1.3 Electrostatic Interactions.1.4 Solution Properties.1.5 Flexibility.References.2 Solution Behavior of Nucleic Acids (Rita S. Dias).2.1 Biological Function of Nucleic Acids.2.2 Discovery of DNA.2.3 Structure of Nucleic Acids.2.4 Nuclei Acids Nanostructures.2.5 Behavior of DNA in Solution.2.6 Melting of Double-Stranded DNA.Acknowledgments.References.3 Single DNA Molecules: Compaction and Decompaction (Anatoly A. Zinchenko, Olga A. Pyshkina, Andrey V. Lezov, Vladimir G. Sergeyev, and Kenichi Yoshikawa).3.1 Introduction.3.2 Condensation and Compaction of DNA by Surfactants.3.3 DNA Condensation by Cationic Liposomes.3.4 DNA Compaction and Decompaction by Multivalent Cations.3.5 DNA Compaction by Polycations.3.6 Compaction of DNA in a Crowded Environment of Neutral Polymer.3.7 Conclusion.References.4 Interaction of DNA with Surfactants in Solution (Rita S. Dias, Kenneth Dawson, and Maria G. Miguel).4.1 Introduction.4.2 DNACationic Surfactant Interactions.4.3 DNA Covalent Gels and Their Interaction with Surfactants.4.4 Applications.Acknowledgments.References.5 Interaction of DNA with Cationic Polymers (Eric Raspaud, Adriana C. Toma, Francoise Livolant, and Joachim Radler).5.1 Introduction.5.2 Theory of DNA Interacting with Polycations.5.3 Condensation of DNA, Phase Diagram, and Structure.5.4 Formation of PolycationDNA Complexes: Polyplexes.5.5 DNA-Nanoparticles for Gene Delivery.5.6 Cellular Uptake and Intracellular Interactions of Polyplexes.5.7 Conclusion.Acknowledgment.References.6 Interactions of Histones with DNA: Nucleosome Assembly, Stability, Dynamics, and Higher Order Structure (Karsten Rippe, Jacek Mazurkiewicz, and Nick Kepper).6.1 Introduction.6.2 Histones.6.3 Structure of HistoneDNA Complexes.6.4 Assembly of Nucleosomes and Chromatosomes.6.5 Stability and Dynamics of Nucleosomes.6.6 Higher Order Chromatin Structures.Acknowledgments.References.7 Opening and Closing DNA: Theories on the Nucleosome (Igor M. Kulic and Helmut Schiessel).7.1 Introduction.7.2 Unwrapping Nucleosomes.7.3 Nucleosome Sliding.7.4 Transcription Through Nucleosomes.7.5 Tail Bridging.7.6 Discussion and Conclusion.Acknowledgment.References.8 DNADNA Interactions (Lars Nordenskiöld, Nikolay Korolev, and Alexander P. Lyubartsev).8.1 Introduction.8.2 The Statistical Polymer Solution Model Predicts DNA Collapse/Aggregation Phase Behavior.8.3 DNA in Solution is Condensed to a Compact State by Multivalent Cationic Ligands.8.4 Ion Correlation Effects Included in Theory and in Computer Modeling Explain DNADNA Attraction.8.5 Conclusions and Future Prospects.References.9 Hydration of DNAAmphiphile Complexes (Cecilia Leal and Hakan Wennerstrom).9.1 Introduction.9.2 General Properties of DNA Double Helices and Cationic Aggregates.9.3 Thermodynamics of DNAAmphiphile Complexes.9.4 Molecular Properties of DNAAmphiphile Complexes.9.5 Concluding Remarks.References.10 DNASurfactant/Lipid Complexes at Liquid Interfaces (Dominique Langevin).10.1 Introduction.10.2 Soluble Surfactants.10.3 Insoluble Surfactants.10.4 Lipids.10.5 Mixtures of Surfactants and Lipids.10.6 Conclusion.References 28611 DNA and DNASurfactant Complexes at Solid Surfaces (Marite Cardenas and Tommy Nylander).11.1 Introduction.11.2 Adsorption of DNA at Surfaces.11.3 Attachment of DNA SurfacesStrategies and Challenges.11.4 DNA Structure on SurfacesComparison with Highly Charged Polyelectrolytes.11.5 Some ApplicationsArrays and Nanostamping.Acknowledgments.References.12 Role of Correlation Forces for DNACosolute Interactions (Malek O. Khan).12.1 Introduction.12.2 Experimental Evidence of DNA Condensation Induced by Electrostatic Agents.12.3 Simulations Used to Characterize the DNA Compaction Mechanism.12.4 Ion Correlations Limiting the Validity of DLVO Theory.12.5 Ion Correlations Driving the Compaction of DNA.12.6 Conformation of Compact DNAThe Coil to Toroid Transition.12.7 Conclusions.References.13 Simulations of Polyions: Compaction, Adsorption onto Surfaces, and Confinement (A.A.C.C. Pais and P. Linse).13.1 Introduction.13.2 Models.13.3 Solutions of Polyions with Multivalent Counterions.13.4 Polyion Adsorption onto Charged Surfaces.13.5 Polyions in Confined Geometries.13.6 Concluding Remarks.References.14 Cross-linked DNA Gels and Gel Particles (Diana Costa, M. Carmen Moran, Maria G. Miguel, and Bjorn Lindman)14.1 Introduction.14.2 Covalently Cross-Linked DNA Gels.14.3 ds-DNA versus ss-DNA: Skin Formation.14.4 DNA Gel Particles.14.5 Physical DNA Gels.References.15 DNA as an Amphiphilic Polymer (Rita S. Dias, Maria G. Miguel, and Bjorn Lindman).15.1 Some General Aspects of Self-Assembly.15.2 Illustrations.References.16 LipidDNA Interactions: StructureFunction Studies of Nanomaterials for Gene Delivery (Kai K. Ewert, Charles E. Samuel, and Cyrus R. Safinya).16.1 Introduction.16.2 Formation and Structures of CLDNA Complexes.16.3 Effect of the LipidDNA Charge Ratio (rchg) on CLDNA Complex Properties.16.4 Effect of the Membrane Charge Density (sM) on CLDNA Complex Properties.16.5 Effect of Nonlamellar CLDNA Complex Structure on the Transfection Mechanism.16.6 Model of Transfection with Lamellar CLDNA Complexes.16.7 Model of Transfection with Inverted Hexagonal CLDNA Complexes.16.8 PEGylated CLDNA Complexes: Surface Functionalization and Distinct DNADNA Interaction Regimes.16.9 Conclusion and Summary.Acknowledgments.References.Index.

„E-Book“ steht für digitales Buch. Um diese Art von Büchern lesen zu können wird entweder eine spezielle Software für Computer, Tablets und Smartphones oder ein E-Book Reader benötigt. Da viele verschiedene Formate (Dateien) für E-Books existieren, gilt es dabei, einiges zu beachten.

Von uns werden digitale Bücher in drei Formaten ausgeliefert. Die Formate sind EPUB mit DRM (Digital Rights Management), EPUB ohne DRM und PDF. Bei den Formaten PDF und EPUB ohne DRM müssen Sie lediglich prüfen, ob Ihr E-Book Reader kompatibel ist. Wenn ein Format mit DRM genutzt wird, besteht zusätzlich die Notwendigkeit, dass Sie einen kostenlosen Adobe® Digital Editions Account besitzen. Wenn Sie ein E-Book, das Adobe® Digital Editions benötigt herunterladen, erhalten Sie eine ASCM-Datei, die zu Digital Editions hinzugefügt und mit Ihrem Account verknüpft werden muss. Einige E-Book Reader (zum Beispiel PocketBook Touch) unterstützen auch das direkte Eingeben der Login-Daten des Adobe Accounts – somit können diese ASCM-Dateien direkt auf das betreffende Gerät kopiert werden.

Da E-Books nur für eine begrenzte Zeit – in der Regel 6 Monate – herunterladbar sind, sollten Sie stets eine Sicherheitskopie auf einem Dauerspeicher (Festplatte, USB-Stick oder CD) vorsehen. Auch ist die Menge der Downloads auf maximal 5 begrenzt.

Funktionsweise E-Books.